patent Archives - Todd McCollough's Website https://www.toddmccollough.com/tag/patent/ Todd McCollough's Website Sat, 28 May 2022 17:56:34 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 https://www.toddmccollough.com/wp-content/uploads/2021/05/cropped-todd_mccollough_logo_125_125-32x32.png patent Archives - Todd McCollough's Website https://www.toddmccollough.com/tag/patent/ 32 32 Directable Antenna System and Method for Improved Communications Quality Patent named co-inventor on https://www.toddmccollough.com/directable-antenna-system-and-method-for-improved-communications-quality-patent-named-co-inventor-on/ https://www.toddmccollough.com/directable-antenna-system-and-method-for-improved-communications-quality-patent-named-co-inventor-on/#respond Sat, 28 May 2022 16:58:16 +0000 https://www.toddmccollough.com/?p=2095 During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Directable Antenna System and Method for Improved Communications Quality” that will […]

The post Directable Antenna System and Method for Improved Communications Quality Patent named co-inventor on appeared first on Todd McCollough's Website.

]]>
During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Directable Antenna System and Method for Improved Communications Quality” that will issue on June 07, 2022. This is the seventh patent I have been a co-inventor on.  If you are interested in learning more about my prior five patents see the post titled “Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc” and also the posts titled “Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc”, “Phase Confocal Method for Near-Field Microwave Imaging Patent named co-inventor on Issued”, and “Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium Patent named co-inventor on Issued“.

The patent describes a system that includes

The patent also describes a method of directing an antenna beam by receiving an electromagnetic wave in a desired direction using at least one directable antenna. This method has

Below is a patent certificate that was created to celebrate the accomplishment of having the patent granted. This is the third patent I have had issued since after the USPTO celebrated the issuance of 10 million patents and changed the patent cover design. This is the first patent I have had issued with Kathi Vidal serving as Director of the United States Patent and Trademark Office.2022_Patent_Certificate_direcatable_antenna_v1

The post Directable Antenna System and Method for Improved Communications Quality Patent named co-inventor on appeared first on Todd McCollough's Website.

]]>
https://www.toddmccollough.com/directable-antenna-system-and-method-for-improved-communications-quality-patent-named-co-inventor-on/feed/ 0
Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium Patent named co-inventor on Issued https://www.toddmccollough.com/accurate-signal-compensations-for-uwb-radar-imaging-in-dispersive-medium-patent-named-co-inventor-on-issued/ https://www.toddmccollough.com/accurate-signal-compensations-for-uwb-radar-imaging-in-dispersive-medium-patent-named-co-inventor-on-issued/#respond Tue, 20 Apr 2021 14:10:00 +0000 http://www.toddmccollough.com/?p=2045 During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium” that […]

The post Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium Patent named co-inventor on Issued appeared first on Todd McCollough's Website.

]]>
During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium” that issued on April 20, 2021. This is the six patent I have been a co-inventor on.  If you are interested in learning more about my prior five patents see the post titled “Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc” and also the posts titled “Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc” and “Phase Confocal Method for Near-Field Microwave Imaging Patent named co-inventor on Issued“.

The patent describes a method titled phase shift and sum (PSAS), which is a novel radar imaging approach which considers the dispersion and loss of the medium as a UWB wave propagates through. PSAS takes into account the propagation speed, path, and decay of each frequency component in a UWB pulse individually. The time-shift evaluation used in prior methods is replaced by a phase-shift evaluation between the sensor and the object at each frequency involved. This method is useful because materials are known to be dispersive. For example, in ground penetrating radar (GPR) and underground surveillance, soil, sands, etc. are dispersive and in biomedical electromagnetic imaging, human tissues are dispersive. When a medium is dispersive it leads to a multi-speed, multi-path, and multi-decay phenomenon in the UWB wireless signal, causing the time shift of the signal to be very difficult to be estimated, and thus poorer image quality is observed when conventional radar methods are used.

The patent provides protection for a system for producing an image comprising a microwave transmitter to transmit a microwave towards an object and a microwave receiver to detect a microwave signal from the object and where there is a processor programmed to produce an image by compensating for both phase shifts and amplitude losses for frequency dependency in the detected microwave signals and specifically where the processor sums the detected signals that have been compensated for both the phase shifts and amplitude losses. The patent also provides protection for a microwave imaging system that has a processor programmed to perform five specific tasks and a memory storing program for the processor and data that includes at least absorption data representation frequency dependence of microwave absorption. The five specific tasks the processor is programmed to include 1) determining a propagation distance from a transmitter to each pixel in a plurality of pixels, and then to a receiver, 2) determining a phase shift based on the propagation distance for each of the plurality of pixels for each of a plurality of discrete frequencies, 3) determining absorption based on the absorption data and propagation distance for each of the plurality of pixels for each of a plurality of discrete frequencies, 4) generating a pixel value for each of the plurality of pixels by combining measured scattered field values at the plurality of discrete frequencies, where the measure scattered field values have been compensated for frequency dependent phase shift, frequency dependent absorption, and refraction loss between at least two mediums, and 5) producing an microwave image that includes the plurality of pixel values.

Below is a patent certificate that was created to celebrate the accomplishment of having the patent granted. This is the second patent I have had issued since after the USPTO celebrated the issuance of 10 million patents and changed the patent cover design.

The post Accurate Signal Compensations for UWB Radar Imaging in Dispersive Medium Patent named co-inventor on Issued appeared first on Todd McCollough's Website.

]]>
https://www.toddmccollough.com/accurate-signal-compensations-for-uwb-radar-imaging-in-dispersive-medium-patent-named-co-inventor-on-issued/feed/ 0
Phase Confocal Method for Near-Field Microwave Imaging Patent named co-inventor on Issued https://www.toddmccollough.com/phase-confocal-method-for-near-field-microwave-imaging-patent-named-co-inventor-on-issued/ https://www.toddmccollough.com/phase-confocal-method-for-near-field-microwave-imaging-patent-named-co-inventor-on-issued/#comments Thu, 03 Oct 2019 01:43:20 +0000 http://www.toddmccollough.com/?p=1850 During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Phase Confocal Method for Near-Field Microwave Imaging” that issued on October […]

The post Phase Confocal Method for Near-Field Microwave Imaging Patent named co-inventor on Issued appeared first on Todd McCollough's Website.

]]>
During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Phase Confocal Method for Near-Field Microwave Imaging” that issued on October 8, 2019. This is the fifth patent I have been a co-inventor on.  If you are interested in learning more about my prior four patents see the post titled “Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc” and also the post titled “Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc.

This patent builds upon work presented in 2017 in a paper titled paper titled “A Phase Confocal Method for Near-Field Microwave Imaging” published in IEEE Transactions on Microwave Theory and Techniques. The patent describes a frequency domain based method that uses electromagnetic waves transmitted and received by antennas to estimate a phase shift caused by an object in the path of the electromagnetic waves. The phase is reversed to allow for an image to be constructed.

The patent provides protection for a system and method for producing microwave images that calculates phase shifts based on a propagation distance from a receiver to a transmitter, compensating a phase using the phase shift, and calculating a variance of the phase shift using an inverse summation. Further, the patent provides protection for a method for producing images that calculates phase shifts based on a propagation distance from a receiver to a transmitter, compensating a phase using the phase shift, and utilizing complex-number detected microwave signals as unit vectors when producing an image. Additionally, the patent provides protection for a method for producing images that calculates phase shifts based on a propagation distance from a receiver to a transmitter and compensating a phase using the phase shift along with information from a phase change in a connector on both the transmitter and receiver end and a phase change in the transmitter and receiver. The patent also provides protection for methods for utilizing multiple frequencies. The high efficiency of the method allows for real-time imaging.

Below is a patent certificate that was created to celebrate the accomplishment of having the patent granted. This is the first patent I have had issued since after the USPTO celebrated the issuance of 10 million patents and changed the patent cover design.

Phase_confocal_method_for_near-field_microwave_imaging_patent_cover_2019

The post Phase Confocal Method for Near-Field Microwave Imaging Patent named co-inventor on Issued appeared first on Todd McCollough's Website.

]]>
https://www.toddmccollough.com/phase-confocal-method-for-near-field-microwave-imaging-patent-named-co-inventor-on-issued/feed/ 1
Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc. https://www.toddmccollough.com/microwave-imaging-device-patent-named-co-inventor-on-assigned-to-ellumen-inc/ https://www.toddmccollough.com/microwave-imaging-device-patent-named-co-inventor-on-assigned-to-ellumen-inc/#comments Tue, 16 Jan 2018 16:56:11 +0000 http://www.toddmccollough.com/?p=1226 During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Microwave Imaging Device” that recently issued on January 16, 2018. This […]

The post Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc. appeared first on Todd McCollough's Website.

]]>
During my work with the Celadon Research Division of Ellumen Inc., I was a co-inventor on a patent titled “Microwave Imaging Device” that recently issued on January 16, 2018. This is the fourth patent I have been a co-inventor on. If you are looking for more details of my prior three patents see the post titled “Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc.” All of these patents were granted by the United States Patent and Trademark Office (USPTO) and currently assigned to Ellumen Inc. I wanted to describe more of the details of the “Microwave Imaging Device” patent.

The “Microwave Imaging Device” patent resulted from wanting an automatic way to acquire microwave imaging data pertaining to some object and/or body part from both a movable transmitting and receiving antenna. In addition, there was desire to be able to collect not just 2D data but also 3D data and also acquire the surface information of what was placed inside the scanner. To accomplish this, a system was built that: 1) contained an object support to hold an object on, 2) contained a transmitter antenna, 3) contained a receiver antenna, 4) had both an inner and outer ring where either the transmitter or receiver was mounted on, 5) contained a controller to independently rotate both the inner and outer ring, 6) contained a computation processor to receive the collected data, and in one embodiment 7) contained a controller to move the object support up and down, and 8) contained an object surface position sensor mounted to either the inner or outer ring to collect the surface of the object. It is important to note that the inner and outer ring are concentric to each other but have different radii. In some embodiments, gears, pinions, and motors are used to help rotate the inner and outer rings, while a feedback monitor can determine if any potential mismatch in positioning occurs. The system further allows for the object surface position data to be used as a seed in the reconstruction of an image represented in dielectric values. In one embodiment, stored data of a prior image reconstruction that closely matches data of the object is used in combination with surface position data as a seed in the reconstruction. The patent also allows for the transmitter and receiver antenna to be mounted in such a way that they can radially translate to and from the center of the device. In addition, the patent covers some aspects of the controller and its module including positions to move both the transmitter and receiver antenna to, the names and locations of the collected data for storage, any necessary instrument parameters, and a calibration of the initial positions of the transmitter and receiver antenna.

The Celadon Research Division of Ellumen Inc. built a prototype of the robotic microwave imaging device as described in the patent that communicates with laboratory instruments (arbitrary waveform generator, oscilloscope, and vector network analyzer) and an infrared sensor and acquires data at different positions for the transmitting and receiving antenna and sensor. I helped program instrument commands to talk to the laboratory instruments using Virtual Instrument Software Architecture (VISA) to automatically acquire data. I collaborated on development of the graphical user interface (GUI) using VB.NET, MATLAB, and a dynamic-link library (DLL). The device can collect data in both the time and frequency domains and be operated remotely with monitoring by a camera. I helped collect data and programmed code to process the data including quickly loading in many data sets, plotting the data, performing analysis, and performing surface reconstruction. I also helped program and generate image reconstruction results from the data collected by the device. The Celadon Research Division of Ellumen Inc., presented a discussion of the device and imaging results in the journal publication IEEE Transactions on Microwave Theory and Techniques and at the IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting in San Diego, CA, in July 2017. See the paper titled “A Phase Confocal Method for Near-Field Microwave Imaging” and the paper of the poster presentation titled “Experimental Microwave Near-field Detection with Moveable Antennas” for some additional details. I was a co-author on the published paper and helped participate in the presentation. A few photos from the conference in San Diego were previously published in the post titled “IEEE AP-S Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting in San Diego, CA, in July 2017.”

It is exciting to work on new technology and devices that can have a real impact on the health of patients. Below is a patent certificate that was created to celebrate the accomplishment of having the patent granted.

Microwave Imaging Device Patent

The post Microwave Imaging Device Patent Named Co-Inventor on Assigned to Ellumen Inc. appeared first on Todd McCollough's Website.

]]>
https://www.toddmccollough.com/microwave-imaging-device-patent-named-co-inventor-on-assigned-to-ellumen-inc/feed/ 4
Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc https://www.toddmccollough.com/description-of-three-patents-named-co-inventor-on-assigned-to-ellumen-inc/ https://www.toddmccollough.com/description-of-three-patents-named-co-inventor-on-assigned-to-ellumen-inc/#comments Sat, 06 Jan 2018 18:49:47 +0000 http://www.toddmccollough.com/?p=1212 During my work with the Celadon Research Division of Ellumen Inc., I have had three patents that I was a co-inventor on issue to date. The first patent was issued […]

The post Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc appeared first on Todd McCollough's Website.

]]>
During my work with the Celadon Research Division of Ellumen Inc., I have had three patents that I was a co-inventor on issue to date. The first patent was issued in August 2015, titled “Dielectric Encoding of Medical Images.” The second patent was issued in July 2016, titled “Distributed Microwave Image Processing System and Method.” The third patent was issued in July 2017, also titled “Dielectric Encoding of Medical Images.” In addition, a fourth patent titled “Microwave Imaging Device” is expected to issue later this month in January 2018, that I am also a co-inventor on. All of these patents were granted by the United States Patent and Trademark Office (USPTO) and currently assigned to Ellumen Inc. I wanted to provide a brief discussion of the first three issued patents.

The first and third patents titled “Dielectric Encoding of Medical Images” resulted from wanting a way to allow for doctors to easily read and understand images produced using electromagnetics represented in dielectric values. To accomplish this I worked with the chief executive officer (CEO) of Ellumen Inc. to explore the microwave imaging modality while also allowing for easy adaptability by doctors and hospitals. I researched the modality, developed algorithms, and developed programs to convert medical images in dielectric values to Hounsfield units, which are present in computed tomography (CT) scans, and to MRI intensity values, which are present in magnetic resonance imaging (MRI) scans. The code successfully worked for single frequencies and over a range of frequency values (using a Debye model). This allows for doctors to understand images producing using electromagnetics in readily understood CT and/or MRI formats without requiring any additional training, leading to timely and accurate medical diagnosis. The conversion method developed allows for existing medical diagnostic tools and analysis techniques to be used directly with microwave imaging. In addition, the method for conversion from an image in Hounsfield units to dielectric values and conversion from an image in dielectric values to Hounsfield units can go in both directions. Furthermore, the method for conversion from an image in dielectric values to MRI intensity values includes creating a water content map and a T1 map as an intermediary step. The patent also included a method to convert medical images in Hounsfield units to dielectric values using a frequency dependent model. Deriving dielectric models from CT scans is often useful when solving complex problems in computational electromagnetics.

The second patent titled “Distributed Microwave Image Processing System and Method” resulted from the need to want all imaging centers, radiology groups, and/or doctor’s offices to be able to have access to images produced using electromagnetics without having to upgrade their computer hardware. A method was developed to allow for the majority of image processing and image reconstruction of microwave images to occur in a centralized computing environment. Instead of performing image processing and image reconstruction at the imaging centers, radiology groups, and/or doctor’s offices, these remote sites send the microwave data they collect to the the centralized computing environment.  The centralized computing environment also offers another distinct advantage; the data and results acquired at all the remote sites can be stored and used to enhance processing and reconstruction of microwave images. The centralized computing environment takes advantage of multiple processors to perform iterative reconstruction and seeds the reconstruction using prior data. In one embodiment of the invention, the seed is generated by first comparing collected and stored scattering fields to find a best or closest match and then using stored data of a prior reconstructed image reconstructed corresponding to the stored scattering fields of the best or closest match. In another embodiment of the invention, the seed is generated by both of (1) using the collected microwave data and (2) using stored data of a prior reconstructed image of a different patient which closely matches data of the current patient. The centralized computing environment also has the capability to convert medical images in dielectric values to Hounsfield units. The method developed and described allows for more accurate image reconstructions to occur in less time than if they were performed at remote sites.

It is exciting to work on new technology and methods that can have a real impact on the health of patients. Below are three patent certificates that were created to celebrate the accomplishment of having these three patents granted.

Todd McCollough Patents Ellumen Celadon

The post Description of Three Patents Named Co-Inventor On Assigned to Ellumen Inc appeared first on Todd McCollough's Website.

]]>
https://www.toddmccollough.com/description-of-three-patents-named-co-inventor-on-assigned-to-ellumen-inc/feed/ 4